TSTP Solution File: QUA017^1 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : QUA017^1 : TPTP v6.1.0. Released v4.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n090.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:29:03 EDT 2014

% Result   : Timeout 300.04s
% Output   : None 
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----NO SOLUTION OUTPUT BY SYSTEM
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : QUA017^1 : TPTP v6.1.0. Released v4.1.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n090.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 07:30:01 CDT 2014
% % CPUTime  : 300.04 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% Failed to open /home/cristobal/cocATP/CASC/TPTP/Axioms/QUA001^0.ax, trying next directory
% FOF formula (<kernel.Constant object at 0x25b4368>, <kernel.DependentProduct object at 0x25b4488>) of role type named emptyset_type
% Using role type
% Declaring emptyset:(fofType->Prop)
% FOF formula (((eq (fofType->Prop)) emptyset) (fun (X:fofType)=> False)) of role definition named emptyset_def
% A new definition: (((eq (fofType->Prop)) emptyset) (fun (X:fofType)=> False))
% Defined: emptyset:=(fun (X:fofType)=> False)
% FOF formula (<kernel.Constant object at 0x25b1cb0>, <kernel.DependentProduct object at 0x25b4098>) of role type named union_type
% Using role type
% Declaring union:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) union) (fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (U:fofType)=> ((or (X U)) (Y U)))) of role definition named union_def
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) union) (fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (U:fofType)=> ((or (X U)) (Y U))))
% Defined: union:=(fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (U:fofType)=> ((or (X U)) (Y U)))
% FOF formula (<kernel.Constant object at 0x25b4098>, <kernel.DependentProduct object at 0x25b43b0>) of role type named singleton_type
% Using role type
% Declaring singleton:(fofType->(fofType->Prop))
% FOF formula (((eq (fofType->(fofType->Prop))) singleton) (fun (X:fofType) (U:fofType)=> (((eq fofType) U) X))) of role definition named singleton_def
% A new definition: (((eq (fofType->(fofType->Prop))) singleton) (fun (X:fofType) (U:fofType)=> (((eq fofType) U) X)))
% Defined: singleton:=(fun (X:fofType) (U:fofType)=> (((eq fofType) U) X))
% FOF formula (<kernel.Constant object at 0x25b4488>, <kernel.Single object at 0x25b4440>) of role type named zero_type
% Using role type
% Declaring zero:fofType
% FOF formula (<kernel.Constant object at 0x25b43b0>, <kernel.DependentProduct object at 0x25d2248>) of role type named sup_type
% Using role type
% Declaring sup:((fofType->Prop)->fofType)
% FOF formula (((eq fofType) (sup emptyset)) zero) of role axiom named sup_es
% A new axiom: (((eq fofType) (sup emptyset)) zero)
% FOF formula (forall (X:fofType), (((eq fofType) (sup (singleton X))) X)) of role axiom named sup_singleset
% A new axiom: (forall (X:fofType), (((eq fofType) (sup (singleton X))) X))
% FOF formula (<kernel.Constant object at 0x25b4488>, <kernel.DependentProduct object at 0x25d27a0>) of role type named supset_type
% Using role type
% Declaring supset:(((fofType->Prop)->Prop)->(fofType->Prop))
% FOF formula (((eq (((fofType->Prop)->Prop)->(fofType->Prop))) supset) (fun (F:((fofType->Prop)->Prop)) (X:fofType)=> ((ex (fofType->Prop)) (fun (Y:(fofType->Prop))=> ((and (F Y)) (((eq fofType) (sup Y)) X)))))) of role definition named supset
% A new definition: (((eq (((fofType->Prop)->Prop)->(fofType->Prop))) supset) (fun (F:((fofType->Prop)->Prop)) (X:fofType)=> ((ex (fofType->Prop)) (fun (Y:(fofType->Prop))=> ((and (F Y)) (((eq fofType) (sup Y)) X))))))
% Defined: supset:=(fun (F:((fofType->Prop)->Prop)) (X:fofType)=> ((ex (fofType->Prop)) (fun (Y:(fofType->Prop))=> ((and (F Y)) (((eq fofType) (sup Y)) X)))))
% FOF formula (<kernel.Constant object at 0x25b4488>, <kernel.DependentProduct object at 0x25d2b00>) of role type named unionset_type
% Using role type
% Declaring unionset:(((fofType->Prop)->Prop)->(fofType->Prop))
% FOF formula (((eq (((fofType->Prop)->Prop)->(fofType->Prop))) unionset) (fun (F:((fofType->Prop)->Prop)) (X:fofType)=> ((ex (fofType->Prop)) (fun (Y:(fofType->Prop))=> ((and (F Y)) (Y X)))))) of role definition named unionset
% A new definition: (((eq (((fofType->Prop)->Prop)->(fofType->Prop))) unionset) (fun (F:((fofType->Prop)->Prop)) (X:fofType)=> ((ex (fofType->Prop)) (fun (Y:(fofType->Prop))=> ((and (F Y)) (Y X))))))
% Defined: unionset:=(fun (F:((fofType->Prop)->Prop)) (X:fofType)=> ((ex (fofType->Prop)) (fun (Y:(fofType->Prop))=> ((and (F Y)) (Y X)))))
% FOF formula (forall (X:((fofType->Prop)->Prop)), (((eq fofType) (sup (supset X))) (sup (unionset X)))) of role axiom named sup_set
% A new axiom: (forall (X:((fofType->Prop)->Prop)), (((eq fofType) (sup (supset X))) (sup (unionset X))))
% FOF formula (<kernel.Constant object at 0x25d27a0>, <kernel.DependentProduct object at 0x25d23f8>) of role type named addition_type
% Using role type
% Declaring addition:(fofType->(fofType->fofType))
% FOF formula (((eq (fofType->(fofType->fofType))) addition) (fun (X:fofType) (Y:fofType)=> (sup ((union (singleton X)) (singleton Y))))) of role definition named addition_def
% A new definition: (((eq (fofType->(fofType->fofType))) addition) (fun (X:fofType) (Y:fofType)=> (sup ((union (singleton X)) (singleton Y)))))
% Defined: addition:=(fun (X:fofType) (Y:fofType)=> (sup ((union (singleton X)) (singleton Y))))
% FOF formula (<kernel.Constant object at 0x25d23f8>, <kernel.DependentProduct object at 0x25d2290>) of role type named order_type
% Using role type
% Declaring leq:(fofType->(fofType->Prop))
% FOF formula (forall (X1:fofType) (X2:fofType), ((iff ((leq X1) X2)) (((eq fofType) ((addition X1) X2)) X2))) of role axiom named order_def
% A new axiom: (forall (X1:fofType) (X2:fofType), ((iff ((leq X1) X2)) (((eq fofType) ((addition X1) X2)) X2)))
% FOF formula (<kernel.Constant object at 0x25d2b00>, <kernel.DependentProduct object at 0x25d2b48>) of role type named multiplication_type
% Using role type
% Declaring multiplication:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0x25d22d8>, <kernel.DependentProduct object at 0x25d2f80>) of role type named crossmult_type
% Using role type
% Declaring crossmult:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) crossmult) (fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (A:fofType)=> ((ex fofType) (fun (X1:fofType)=> ((ex fofType) (fun (Y1:fofType)=> ((and ((and (X X1)) (Y Y1))) (((eq fofType) A) ((multiplication X1) Y1))))))))) of role definition named crossmult_def
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) crossmult) (fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (A:fofType)=> ((ex fofType) (fun (X1:fofType)=> ((ex fofType) (fun (Y1:fofType)=> ((and ((and (X X1)) (Y Y1))) (((eq fofType) A) ((multiplication X1) Y1)))))))))
% Defined: crossmult:=(fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (A:fofType)=> ((ex fofType) (fun (X1:fofType)=> ((ex fofType) (fun (Y1:fofType)=> ((and ((and (X X1)) (Y Y1))) (((eq fofType) A) ((multiplication X1) Y1))))))))
% FOF formula (forall (X:(fofType->Prop)) (Y:(fofType->Prop)), (((eq fofType) ((multiplication (sup X)) (sup Y))) (sup ((crossmult X) Y)))) of role axiom named multiplication_def
% A new axiom: (forall (X:(fofType->Prop)) (Y:(fofType->Prop)), (((eq fofType) ((multiplication (sup X)) (sup Y))) (sup ((crossmult X) Y))))
% FOF formula (<kernel.Constant object at 0x25d2290>, <kernel.Single object at 0x25d2f80>) of role type named one_type
% Using role type
% Declaring one:fofType
% FOF formula (forall (X:fofType), (((eq fofType) ((multiplication X) one)) X)) of role axiom named multiplication_neutral_right
% A new axiom: (forall (X:fofType), (((eq fofType) ((multiplication X) one)) X))
% FOF formula (forall (X:fofType), (((eq fofType) ((multiplication one) X)) X)) of role axiom named multiplication_neutral_left
% A new axiom: (forall (X:fofType), (((eq fofType) ((multiplication one) X)) X))
% Failed to open /home/cristobal/cocATP/CASC/TPTP/Axioms/QUA001^1.ax, trying next directory
% FOF formula (<kernel.Constant object at 0x282d0e0>, <kernel.DependentProduct object at 0x25b4098>) of role type named tests
% Using role type
% Declaring test:(fofType->Prop)
% FOF formula (forall (X:fofType), ((test X)->((ex fofType) (fun (Y:fofType)=> ((and ((and (((eq fofType) ((addition X) Y)) one)) (((eq fofType) ((multiplication X) Y)) zero))) (((eq fofType) ((multiplication Y) X)) zero)))))) of role axiom named test_definition
% A new axiom: (forall (X:fofType), ((test X)->((ex fofType) (fun (Y:fofType)=> ((and ((and (((eq fofType) ((addition X) Y)) one)) (((eq fofType) ((multiplication X) Y)) zero))) (((eq fofType) ((multiplication Y) X)) zero))))))
% FOF formula (forall (X:fofType), ((test X)->(((eq fofType) ((multiplication X) X)) X))) of role conjecture named test_idemp
% Conjecture to prove = (forall (X:fofType), ((test X)->(((eq fofType) ((multiplication X) X)) X))):Prop
% We need to prove ['(forall (X:fofType), ((test X)->(((eq fofType) ((multiplication X) X)) X)))']
% Parameter fofType:Type.
% Definition emptyset:=(fun (X:fofType)=> False):(fofType->Prop).
% Definition union:=(fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (U:fofType)=> ((or (X U)) (Y U))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition singleton:=(fun (X:fofType) (U:fofType)=> (((eq fofType) U) X)):(fofType->(fofType->Prop)).
% Parameter zero:fofType.
% Parameter sup:((fofType->Prop)->fofType).
% Axiom sup_es:(((eq fofType) (sup emptyset)) zero).
% Axiom sup_singleset:(forall (X:fofType), (((eq fofType) (sup (singleton X))) X)).
% Definition supset:=(fun (F:((fofType->Prop)->Prop)) (X:fofType)=> ((ex (fofType->Prop)) (fun (Y:(fofType->Prop))=> ((and (F Y)) (((eq fofType) (sup Y)) X))))):(((fofType->Prop)->Prop)->(fofType->Prop)).
% Definition unionset:=(fun (F:((fofType->Prop)->Prop)) (X:fofType)=> ((ex (fofType->Prop)) (fun (Y:(fofType->Prop))=> ((and (F Y)) (Y X))))):(((fofType->Prop)->Prop)->(fofType->Prop)).
% Axiom sup_set:(forall (X:((fofType->Prop)->Prop)), (((eq fofType) (sup (supset X))) (sup (unionset X)))).
% Definition addition:=(fun (X:fofType) (Y:fofType)=> (sup ((union (singleton X)) (singleton Y)))):(fofType->(fofType->fofType)).
% Parameter leq:(fofType->(fofType->Prop)).
% Axiom order_def:(forall (X1:fofType) (X2:fofType), ((iff ((leq X1) X2)) (((eq fofType) ((addition X1) X2)) X2))).
% Parameter multiplication:(fofType->(fofType->fofType)).
% Definition crossmult:=(fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (A:fofType)=> ((ex fofType) (fun (X1:fofType)=> ((ex fofType) (fun (Y1:fofType)=> ((and ((and (X X1)) (Y Y1))) (((eq fofType) A) ((multiplication X1) Y1)))))))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Axiom multiplication_def:(forall (X:(fofType->Prop)) (Y:(fofType->Prop)), (((eq fofType) ((multiplication (sup X)) (sup Y))) (sup ((crossmult X) Y)))).
% Parameter one:fofType.
% Axiom multiplication_neutral_right:(forall (X:fofType), (((eq fofType) ((multiplication X) one)) X)).
% Axiom multiplication_neutral_left:(forall (X:fofType), (((eq fofType) ((multiplication one) X)) X)).
% Parameter test:(fofType->Prop).
% Axiom test_definition:(forall (X:fofType), ((test X)->((ex fofType) (fun (Y:fofType)=> ((and ((and (((eq fofType) ((addition X) Y)) one)) (((eq fofType) ((multiplication X) Y)) zero))) (((eq fofType) ((multiplication Y) X)) zero)))))).
% Trying to prove (forall (X:fofType), ((test X)->(((eq fofType) ((multiplication X) X)) X)))
% Found eq_ref00:=(eq_ref0 ((multiplication X) X)):(((eq fofType) ((multiplication X) X)) ((multiplication X) X))
% Found (eq_ref0 ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) X)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) X)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) X)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) X)
% Found eq_ref00:=(eq_ref0 ((multiplication X) X)):(((eq fofType) ((multiplication X) X)) ((multiplication X) X))
% Found (eq_ref0 ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) X)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) X)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) X)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) X)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found eq_ref00:=(eq_ref0 X):(((eq fofType) X) X)
% Found (eq_ref0 X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found eq_ref00:=(eq_ref0 X):(((eq fofType) X) X)
% Found (eq_ref0 X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found x0:(P ((multiplication X) X))
% Instantiate: b:=((multiplication X) X):fofType
% Found x0 as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 X):(((eq fofType) X) X)
% Found (eq_ref0 X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found x0:(P ((multiplication X) X))
% Instantiate: b:=((multiplication X) X):fofType
% Found x0 as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 X):(((eq fofType) X) X)
% Found (eq_ref0 X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found eq_ref00:=(eq_ref0 ((multiplication X) X)):(((eq fofType) ((multiplication X) X)) ((multiplication X) X))
% Found (eq_ref0 ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) X)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) X)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) X)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) X)
% Found eq_ref00:=(eq_ref0 X):(((eq fofType) X) X)
% Found (eq_ref0 X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found x0:(P X)
% Instantiate: b:=X:fofType
% Found x0 as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 ((multiplication X) X)):(((eq fofType) ((multiplication X) X)) ((multiplication X) X))
% Found (eq_ref0 ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found eq_ref00:=(eq_ref0 X):(((eq fofType) X) X)
% Found (eq_ref0 X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found eq_ref00:=(eq_ref0 ((multiplication X) X)):(((eq fofType) ((multiplication X) X)) ((multiplication X) X))
% Found (eq_ref0 ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) X)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) X)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) X)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) X)
% Found eq_ref00:=(eq_ref0 X):(((eq fofType) X) X)
% Found (eq_ref0 X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found x0:(P X)
% Instantiate: b:=X:fofType
% Found x0 as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 ((multiplication X) X)):(((eq fofType) ((multiplication X) X)) ((multiplication X) X))
% Found (eq_ref0 ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found eq_ref00:=(eq_ref0 X):(((eq fofType) X) X)
% Found (eq_ref0 X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found sup_es0:=(sup_es (fun (x0:fofType)=> (P b))):((P b)->(P b))
% Found (sup_es (fun (x0:fofType)=> (P b))) as proof of (P0 b)
% Found (sup_es (fun (x0:fofType)=> (P b))) as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 ((multiplication X) X)):(((eq fofType) ((multiplication X) X)) ((multiplication X) X))
% Found (eq_ref0 ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b0)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b0)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b0)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) X)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) X)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) X)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) X)
% Found sup_es0:=(sup_es (fun (x0:fofType)=> (P X))):((P X)->(P X))
% Found (sup_es (fun (x0:fofType)=> (P X))) as proof of (P0 X)
% Found (sup_es (fun (x0:fofType)=> (P X))) as proof of (P0 X)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found eq_ref00:=(eq_ref0 X):(((eq fofType) X) X)
% Found (eq_ref0 X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found eq_ref00:=(eq_ref0 X):(((eq fofType) X) X)
% Found (eq_ref0 X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found eq_ref00:=(eq_ref0 X):(((eq fofType) X) X)
% Found (eq_ref0 X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found sup_es0:=(sup_es (fun (x0:fofType)=> (P b))):((P b)->(P b))
% Found (sup_es (fun (x0:fofType)=> (P b))) as proof of (P0 b)
% Found (sup_es (fun (x0:fofType)=> (P b))) as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 ((multiplication X) X)):(((eq fofType) ((multiplication X) X)) ((multiplication X) X))
% Found (eq_ref0 ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b0)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b0)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b0)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) X)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) X)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) X)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) X)
% Found sup_es0:=(sup_es (fun (x0:fofType)=> (P X))):((P X)->(P X))
% Found (sup_es (fun (x0:fofType)=> (P X))) as proof of (P0 X)
% Found (sup_es (fun (x0:fofType)=> (P X))) as proof of (P0 X)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found eq_ref00:=(eq_ref0 X):(((eq fofType) X) X)
% Found (eq_ref0 X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found eq_ref00:=(eq_ref0 X):(((eq fofType) X) X)
% Found (eq_ref0 X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found eq_ref00:=(eq_ref0 X):(((eq fofType) X) X)
% Found (eq_ref0 X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found sup_es0:=(sup_es (fun (x0:fofType)=> (P X))):((P X)->(P X))
% Found (sup_es (fun (x0:fofType)=> (P X))) as proof of (P0 X)
% Found (sup_es (fun (x0:fofType)=> (P X))) as proof of (P0 X)
% Found multiplication_neutral_right0:=(multiplication_neutral_right b):(((eq fofType) ((multiplication b) one)) b)
% Found (multiplication_neutral_right b) as proof of (((eq fofType) ((multiplication b) b)) b)
% Found (multiplication_neutral_right b) as proof of (((eq fofType) ((multiplication b) b)) b)
% Found (multiplication_neutral_right b) as proof of (((eq fofType) ((multiplication b) b)) b)
% Found (eq_sym010 (multiplication_neutral_right b)) as proof of (P b)
% Found ((eq_sym01 b) (multiplication_neutral_right b)) as proof of (P b)
% Found (((eq_sym0 ((multiplication b) b)) b) (multiplication_neutral_right b)) as proof of (P b)
% Found (((eq_sym0 ((multiplication b) b)) b) (multiplication_neutral_right b)) as proof of (P b)
% Found eq_ref00:=(eq_ref0 a):(((eq fofType) a) a)
% Found (eq_ref0 a) as proof of (((eq fofType) a) X)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) X)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) X)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) X)
% Found eq_ref00:=(eq_ref0 a):(((eq fofType) a) a)
% Found (eq_ref0 a) as proof of (((eq fofType) a) X)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) X)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) X)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) X)
% Found eq_ref00:=(eq_ref0 a):(((eq fofType) a) a)
% Found (eq_ref0 a) as proof of (((eq fofType) a) X)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) X)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) X)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) X)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) ((multiplication X) X))
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) ((multiplication X) X))
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) ((multiplication X) X))
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) ((multiplication X) X))
% Found eq_ref00:=(eq_ref0 X):(((eq fofType) X) X)
% Found (eq_ref0 X) as proof of (((eq fofType) X) b0)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b0)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b0)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) ((multiplication X) X))
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) ((multiplication X) X))
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) ((multiplication X) X))
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) ((multiplication X) X))
% Found eq_ref00:=(eq_ref0 X):(((eq fofType) X) X)
% Found (eq_ref0 X) as proof of (((eq fofType) X) b0)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b0)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b0)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b0)
% Found eq_ref00:=(eq_ref0 ((multiplication X) X)):(((eq fofType) ((multiplication X) X)) ((multiplication X) X))
% Found (eq_ref0 ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) X)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) X)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) X)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) X)
% Found multiplication_neutral_right0:=(multiplication_neutral_right b):(((eq fofType) ((multiplication b) one)) b)
% Found (multiplication_neutral_right b) as proof of (((eq fofType) ((multiplication b) b)) b)
% Found (multiplication_neutral_right b) as proof of (((eq fofType) ((multiplication b) b)) b)
% Found (multiplication_neutral_right b) as proof of (((eq fofType) ((multiplication b) b)) b)
% Found (eq_sym010 (multiplication_neutral_right b)) as proof of (P b)
% Found ((eq_sym01 b) (multiplication_neutral_right b)) as proof of (P b)
% Found (((eq_sym0 ((multiplication b) b)) b) (multiplication_neutral_right b)) as proof of (P b)
% Found (((eq_sym0 ((multiplication b) b)) b) (multiplication_neutral_right b)) as proof of (P b)
% Found sup_es0:=(sup_es (fun (x0:fofType)=> (P b))):((P b)->(P b))
% Found (sup_es (fun (x0:fofType)=> (P b))) as proof of (P0 b)
% Found (sup_es (fun (x0:fofType)=> (P b))) as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 a):(((eq fofType) a) a)
% Found (eq_ref0 a) as proof of (((eq fofType) a) X)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) X)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) X)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) X)
% Found eq_ref00:=(eq_ref0 a):(((eq fofType) a) a)
% Found (eq_ref0 a) as proof of (((eq fofType) a) X)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) X)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) X)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) X)
% Found eq_ref00:=(eq_ref0 a):(((eq fofType) a) a)
% Found (eq_ref0 a) as proof of (((eq fofType) a) X)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) X)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) X)
% Found ((eq_ref fofType) a) as proof of (((eq fofType) a) X)
% Found eq_ref00:=(eq_ref0 X):(((eq fofType) X) X)
% Found (eq_ref0 X) as proof of (((eq fofType) X) b0)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b0)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b0)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 ((multiplication X) X)):(((eq fofType) ((multiplication X) X)) ((multiplication X) X))
% Found (eq_ref0 ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) X)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) X)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) X)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) X)
% Found x0:(P X)
% Instantiate: b:=X:fofType
% Found x0 as proof of (P0 b)
% Found multiplication_neutral_left0:=(multiplication_neutral_left ((multiplication X) X)):(((eq fofType) ((multiplication one) ((multiplication X) X))) ((multiplication X) X))
% Instantiate: b:=((multiplication X) X):fofType
% Found multiplication_neutral_left0 as proof of (((eq fofType) ((multiplication one) ((multiplication X) X))) b)
% Found x0:(P X)
% Instantiate: b:=X:fofType
% Found x0 as proof of (P0 b)
% Found multiplication_neutral_right0:=(multiplication_neutral_right ((multiplication X) X)):(((eq fofType) ((multiplication ((multiplication X) X)) one)) ((multiplication X) X))
% Instantiate: b:=((multiplication X) X):fofType
% Found multiplication_neutral_right0 as proof of (((eq fofType) ((multiplication ((multiplication X) X)) one)) b)
% Found eq_ref00:=(eq_ref0 X):(((eq fofType) X) X)
% Found (eq_ref0 X) as proof of (((eq fofType) X) b0)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b0)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b0)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found multiplication_neutral_left0:=(multiplication_neutral_left ((multiplication X) X)):(((eq fofType) ((multiplication one) ((multiplication X) X))) ((multiplication X) X))
% Instantiate: b:=((multiplication X) X):fofType
% Found multiplication_neutral_left0 as proof of (((eq fofType) ((multiplication one) ((multiplication X) X))) b)
% Found x0:(P X)
% Instantiate: b:=X:fofType
% Found x0 as proof of (P0 b)
% Found x0:(P X)
% Instantiate: b:=X:fofType
% Found x0 as proof of (P0 b)
% Found multiplication_neutral_right0:=(multiplication_neutral_right ((multiplication X) X)):(((eq fofType) ((multiplication ((multiplication X) X)) one)) ((multiplication X) X))
% Instantiate: b:=((multiplication X) X):fofType
% Found multiplication_neutral_right0 as proof of (((eq fofType) ((multiplication ((multiplication X) X)) one)) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found eq_ref00:=(eq_ref0 X):(((eq fofType) X) X)
% Found (eq_ref0 X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found eq_ref00:=(eq_ref0 X):(((eq fofType) X) X)
% Found (eq_ref0 X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) X)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) X)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) X)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) X)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) b0)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found eq_ref00:=(eq_ref0 X):(((eq fofType) X) X)
% Found (eq_ref0 X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found eq_ref00:=(eq_ref0 b):(((eq fofType) b) b)
% Found (eq_ref0 b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found ((eq_ref fofType) b) as proof of (((eq fofType) b) ((multiplication X) X))
% Found eq_ref00:=(eq_ref0 X):(((eq fofType) X) X)
% Found (eq_ref0 X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found ((eq_ref fofType) X) as proof of (((eq fofType) X) b)
% Found sup_singleset0:=(sup_singleset ((multiplication X) X)):(((eq fofType) (sup (singleton ((multiplication X) X)))) ((multiplication X) X))
% Instantiate: b:=((multiplication X) X):fofType
% Found sup_singleset0 as proof of (((eq fofType) (sup (singleton ((multiplication X) X)))) b)
% Found x0:(P X)
% Instantiate: b:=X:fofType
% Found x0 as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 b0):(((eq fofType) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found ((eq_ref fofType) b0) as proof of (((eq fofType) b0) b)
% Found eq_ref00:=(eq_ref0 ((multiplication X) X)):(((eq fofType) ((multiplication X) X)) ((multiplication X) X))
% Found (eq_ref0 ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b0)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b0)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b0)
% Found ((eq_ref fofType) ((multiplication X) X)) as proof of (((eq fofType) ((multiplication X) X)) b0)
% Found sup_singleset0:=(sup_singleset ((multiplication X) X)):(((eq fofType) (sup (singleton ((multiplication X) X)))) ((multiplication X) X))
% Instantiate: b:=((multiplication X) X):fofType
% Found sup_singleset0 as proof of (((eq fofType) (sup (singleton ((multiplication X) X)))) b)
% Found x0:(P X)
% Instantiate: b:=X:fofType
% Found x0 as proof of (P0 b)
% Found x0:(P X)
% Instantiate: b:=X:fofType
% Found x0 as proof of (P0 b)
% Found multiplication_neutral_right1:=(multiplication_neutral_right ((multiplication ((multiplication X) X)) one)):(((eq fofType) ((multiplication ((multiplication ((multiplication X) X)) one)) one)) ((multiplication ((multiplication X) X)) one))
% Found (multiplication_neutral_right ((multiplication ((multiplication X) X)) one)) as proof of (((eq fofType) ((multiplication ((multiplication ((multiplication X) X)) one)) one)) b)
% Found (multiplication_neutral_right ((multiplication ((multiplication X) X)) one)) as proof of (((eq fofType) ((multiplication ((multiplication ((multiplication X) X)) one)) one)) b)
% Found (multiplication_neutral_right ((multiplication ((multiplication X) X)) one)) as proof of (((eq fofType) ((multiplication ((multiplication ((multiplication X) X)) one)) one)) b)
% Found x0:(P X)
% Instantiate: b:=X:fofType
% Found x0 as proof of (P0 b)
% Found multiplication_neutral_left1:=(multiplication_neutral_left ((multiplication one) ((multiplication X) X))):(((eq fofType) ((multiplication one) ((multiplication one) ((multiplication X) X)))) ((multiplication one) ((multiplication X) X)))
% Found (multiplication_neutral_left ((multiplication one) ((multiplication X) X))) as proof of (((eq fofType) ((multiplication one) ((multiplication one) ((multiplication X) X)))) b)
% Found (multiplication_neutral_left ((multiplication one) ((multiplication X) X))) as proof of (((eq fofType) ((multiplication one) ((multiplication one) ((multiplication X) X)))) b)
% Found (multiplication_neutral_left ((multiplication one) ((multiplication X) X))) as proof of (((eq fofType) ((multiplication one) ((multiplication one) ((multiplication X) X)))) b)
% Found x0:(P X)
% Instantiate: b:=X:fofType
% Found x0 as proof of (P0 b)
% Found multiplication_neutral_left1:=(multiplication_neutral_left ((multiplication one) ((multiplication X) X))):(((eq fofType) ((multiplication one) ((multiplication one) ((multiplication X) X)))) ((multiplication one) ((multiplication X) X)))
% Found (multiplication_neutral_left ((multiplication one) ((multiplication X) X))) as proof of (((eq fofType) ((multiplication one) ((multiplication one) ((multiplication X) X)))) b)
% Found (multiplication_neutral_left ((multiplication one) ((multiplication X) X))) as proof of (((eq fofType) ((multiplication one) ((multiplication one) ((multiplicatio
% EOF
%------------------------------------------------------------------------------